

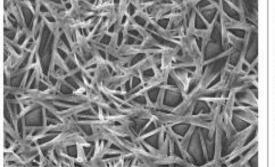
3BV.1.29. SYNTHESIS OF PEROVSKITE FILMS FOR PHOTOVOLTAICS: INFLUENCE OF THE REAGENTS' RATIO ON THE MATERIAL PROPERTIES

V. P. Kostylyov¹, A. V. Sachenko¹, I. O. Sokolovskyi¹, V. M. Vlasiuk¹,

P.V. Torchyniuk², O.I. V'yunov², A.G. Belous² and <u>A.I. Shkrebtii³</u>

illumination

¹ V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine ² V.I. Vernadsky Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine

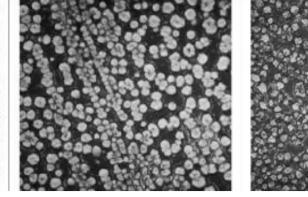

³ Ontario Tech University, Oshawa, ON, Canada

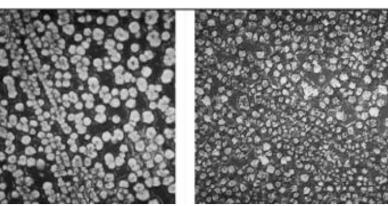
Corresponding author, email: vkostylyov@ukr.net

SCIENCES OF UKRAINE Ontario Tech UNIVERSITY

V. LASHKARYOV INSTITUTE OF SEMICONDUCTOR

PHYSICS, NATIONAL ACADEMY OF


methylammonium


measurement

Academy of Sciences of Ukraine

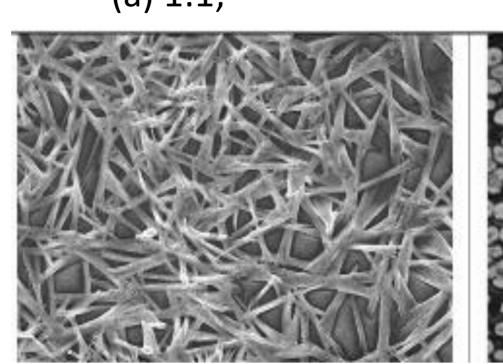
or Sn.

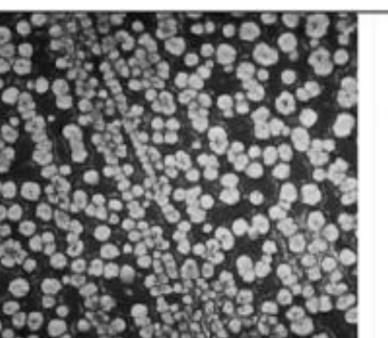
(CH3NH3 +), and B is Pb

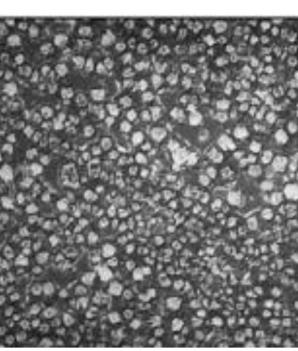
Typical perovskite structure

The general formula is ABX₂ where X (X = F, Cl, Br, I) is an anion, and A and B are cations of different sizes (A is larger than B). Cation A is mainly

- Perovskite solar cells (SCs) have recently emerged as a promising candidate for the next generation thin film photo-voltaics (PV) (see, e.g.,
- The perovskites advantages are due to a suitable direct bandgap with large absorption coefficients, and solution based fabrication process.

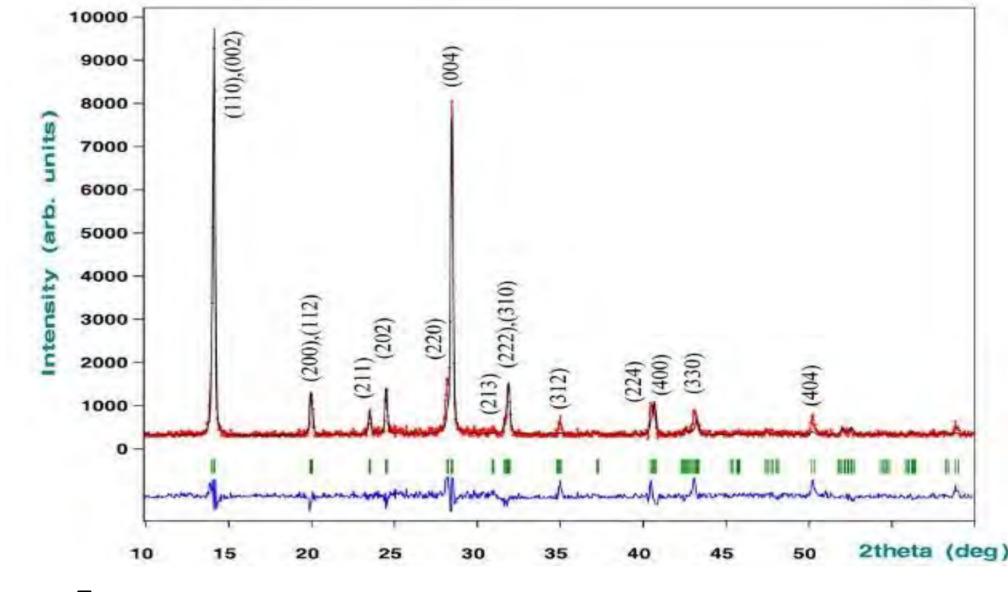

1. I. Braly, D. de Quilettes, et al. "Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency", Nature Photonics 12 (2018) 355


Schematic of the experimental set-up for surface photovoltage (SPV)


Spectral measurements were performed at the certified Testing Center for Photoconverters

and Photovoltaic Batteries of the V.E.Laskaryov Institute of Semiconductor Physics National

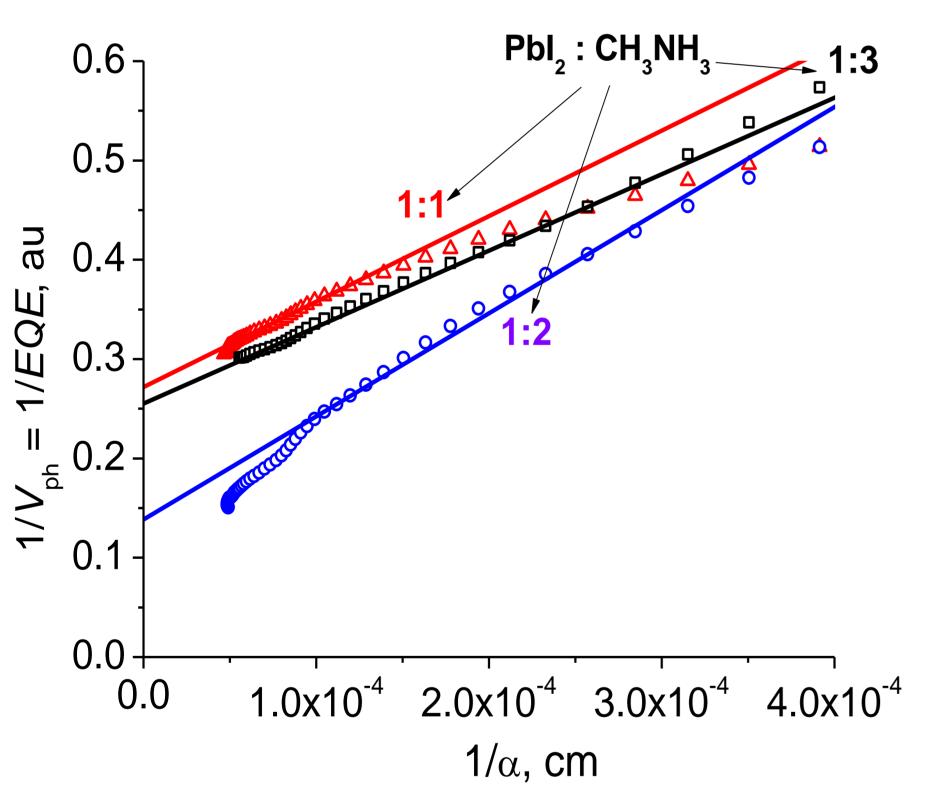
Microstructure of the $CH_3NH_3Pbl_{2.98}Cl_{0.02}$ films with Pbl_2 and CH_3NH_3 I ratios equal to 1:1, 1:2, and 1:3 (a) 1:1; (b) 1:2; (c) 1:3 Lattice parameters of

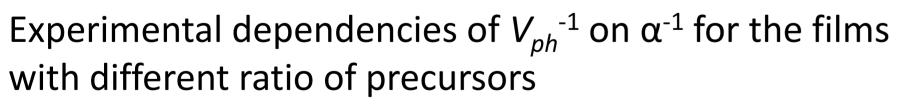


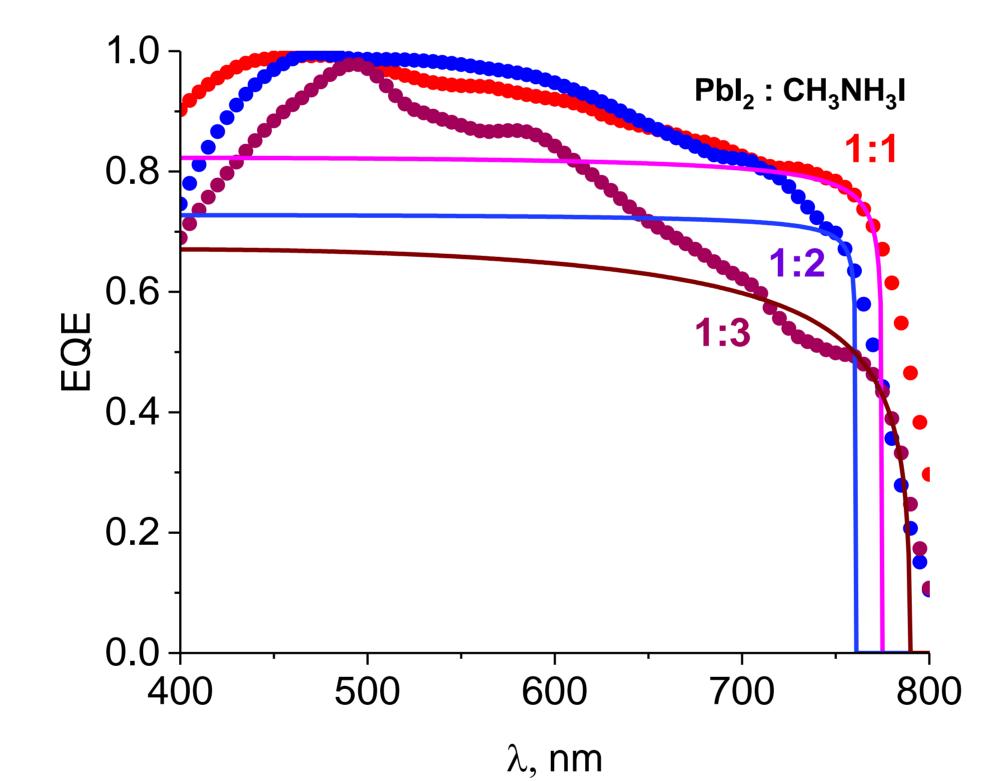
CH₃NH₃Pbl_{2.98}Cl_{0.02}: a = 0.8870(2) Å,c = 1.2669 (8) Å, $V = 0.9968(7) \text{ Å}^3$

Experimental (symbols) and theoretical (curves) X-ray diffractograms CH₃NH₃Pbl_{2,98}Cl_{0.02} sample after the thermal processing at 90°C. The vertical lines indicate peak locations, with Miller indices given in the brackets.

To the registration


system




Features:

- -- low-signal surface photovoltage $V_{ph}(\lambda) << kT/q$
- --constant photons flux of the monochromatic light
- -- wavelength range $\Delta \lambda = 400 \div 900$ nm
- -- modulation frequency of 20 Hz
- -- $V_{ph}(\lambda)$ did not exceed 40 μ V

chopper and beam ITO mica Perovskite film splitter etalon monochromator glass substrate **Experimental** contact table sample experimental sample Transparent clamping *capacitive* electrode: mica ($\sim 5 \mu m$) + ITO Computer power supply with an area of $\sim 7 \times 7 \text{ mm}^2$ with integrated feed-back unit Lock-in Lock-in registration system feed-back signal

Experimental (points) and theoretical (lines) spectra of the normalized low-signal surface photovoltage.

Conclusions

In **profiled surface** case, the cutoff length $1/\alpha$ equals $L_{ph} = 4n_r^2 d/b$ - the mean path length L_{ph} of the long- wavelength photon before its photoactive absorption

If the cut-off significantly exceeds the sample thickness, this indicates on a longer diffusion length of the minority carriers compared to the sample thickness. When this length significantly exceeds the sample thickness, we have to use expression for the **textured surface** $V_{ph}(\lambda)/V_{phmax}(\lambda)=EQE(\lambda)=[1+b/4\alpha(\lambda)\cdot d\cdot (n_r(\lambda))^2]^{-1}$

b>1 is a non-dimensional parameter equal to the ratio of the longest photon path length possible, $4n_r^2d$ at ideal Lambertian light trapping to its real value

Pbl₂: CH₃NH₃ 0.6 -0.4 0.2 600 800 700 λ , nm

Experimental (symbols) and theoretical (lines) spectral dependencies of the samples' transmission for different ratios of the precursors for perovskites with PbI₂ and CH₃NH₃I ratios of 1:1, 1:2 and 1:3.

Pbl₂: CH₃NH₃ 10⁰ ਲ 10⁻¹ λ_{ph} 10⁻² 1.48 1.52 1.56 1.60 1.64 E, eV

Urbach parameters determination. Experimental surface photovoltage $V_{ph}(E)$ spectra for the synthesized CH₃NH₃Pbl_{0.98}Cl_{0.02} films (points). Lines: theory, calculated using equation $\alpha_{ur} = \alpha_{ur0} \exp(E_{ph}/E_0)$

Parameters of films (thickness d = 400nm)

		•		•
PbI ₂ :CH ₃ NH ₃ I	E_{g} , eV	E_0 , meV	$\alpha_{ur0} \cdot 10^4$, cm ⁻¹	Cut-off values 1/α, μm
1:1	1.59	18	4.5	4.415
1:2	1.62	19	1.6	1.19
1:3	1.57	22	3.6	4.75

- The microstructure of perovskite films depends significantly on on the ratio of PbI₂:CH₃NH₃I precursors despite the fact that the elemental composition of the perovskite film remains stoichiometric.
- For the ratio of precursors 1:1, the structure is needle-shaped. At a ratio of 1:2, the films consist of faceted crystallites in an amorphous matrix, and contain smaller crystallites at the 1:3 ratio.
- This leads to the surface microrelief appea-rance, which improves the light capture in the longwavelength spectral region.
- The best capture is achieved in the films with a precursors ratio of 1:1, and the worst at 1:2.
- The perovskite films' bandgap depends on the precursors ratio. It equals to 1.59 eV; 1.62 eV and 1.57 eV for the films with PbI₂ to CH₃NH₃I ratio of 1:1, 1:2 and 1:3, respectively.
- The films investigated have longer diffusion length of the minority charge carriers as compared to the films thickness and are promising for applications in photovoltaics and optoelectronics.
- The low-signal surface photovoltage $V_{ph}(\lambda)$ decrea-ses with increasing the proportion of CH₃NH₃I from 1 to 3 during the synthesis of the films.
- The $V_{ph}(\lambda)$ values are 8.1µV at (1:1), 0.96 µV at (1:2) and 0.41 µV at (1:3), which indicates on decrease of the surface charge and the initial surface band bending.
- It is established that the spectral dependencies of the low-signal surface photovoltage $V_{ph}(\lambda)$ are much more sensitive to the microstructure and electronic structure in the region of the absorption edge, compared to the optical transmission spectra.